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The key feature for the successful implementation of the surrogate data test for nonlinearity on a scalar time
series is the generation of surrogate data that represent exactly the null hyp¢hesislly transformed
normal stochastic process.e., they possess the sample autocorrelation and amplitude distribution of the given
data. A conceptual approach and algorithm for the generation of surrogate data is proposed, cstifeid atg
transformed autoregressive proceSTAP). It identifies a normal autoregressive process and a monotonic
static transform, so that the transformed realizations of this process fulfill exactly both conditions and do not
suffer from bias in autocorrelation as the surrogate data generated by other algorithms. The appropriateness of
STAP is demonstrated with simulated and real world data.
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The surrogate data test for nonlinearity has been widelyithm, called STAP, generates the surrogate data as realiza-
used in real applications in order to establish statistically theions of a suitablestatically transformed autoregressive pro-
existence of nonlinear dynamics and justify the use of noneess(STAP), i.e., the process undef, is designed as a static
linear tools in the analysis of time serig¢$,2]. The most transform of a suitable normal process.
general null hypothesibl of this test so far is that the ex- The main idea behind the STAP algorithm is that &ory

amined time seriex=[Xxq, ... X,]" is a realization of a stationary procesX=[X;,X,, ...]’, for which we have fi-
normal (linean processs=|[s;, ...,Sy]’ undergoing a pos- nite scalar measurememtsthere is a scaldmear stochastic
sibly nonlinear static transformh, i.e., x;=h(s;), i processZ with the same autocorrelatiopy and marginal

=1,...n. To test the null hypothesis, an estimatbom a  CDF ®y as for the observed procefp,(7)=px(7) and
nonlinear method applied to the original datg, is com-  ®,(z)=d«(x;)], i.e., Z is a scalar “linear copy” of the
pared to the estimateg, . .. .0y onM surrogate time series observedX. The objective is to deriv& through a static
representing the null hypothedi8,4]. A properly designed monotonic transforng on a scalar normal processwith a
surrogate time seriesshould possess the same autocorrelaproper autocorrelatiop, i.e., Z;=g(U;). Thusg and p
tion as the original data,(7) =r(7), for a range of lags, have to be properly selected, so t@ahas the desired prop-
and the same amplitude distributidf,(z;) = F,(X;) [Fx(X;) erties. In practice, the surrogate data set is a finite realization
is the cumulative density functiof€DF) of x;], and be oth- z=[z;, ... ,z,]" of the procesZ andg and p, are esti-
erwise random. mated based solely on Note thatg andU are in general

It has been reported that erroneous results are likely tdifferent fromh andS, respectively, oH (they are the same
occur mainly due to the insufficiency of the algorithms toif h is monotonic[10]). Thus with this approackl, can be
generate surrogate data that preserve the original linear coiermulated more generally, i.e., the time series is generated
relations [5]. The prominent algorithm of the amplitude- by a linear stochastic process.
adjusted Fourier transforiRAFT) [6], used in most appli- Let @, be the marginal CDF of a standard normal process
cations so far, is built based on the assumption ofu. A suitable choice foig, so that®,(z)=dx(x;), is de-
monotonicity ofh. Whenh is not monotonic, the AAFT al- fined as[11]
gorithm is found to favor the rejection dfiy due to the
mismatch of the origi_nal Iipear correlatiofig]. The iterated Zi=g(U;) =Dy H(Dy(U)), (1
AAFT (IAAFT) algorithm improves the match of the auto-
correlation of AAFT[8], but with about the same accuracy hereq is monotonic b nstruction. Assuming té (x.
for all the surrogates, so that the small variance, combined "< ¢ IS MONOTONIC By CONSITUCLON. ASSUMING k(i)

with the small bias, may be another cause for false rejection:lss(/h?gr?g?g%ﬁhi?gesfg'rcgﬁ/ '?;éﬁ?:;nguragigﬁizrg Ui:al’func-
in some casef7]. Another algorithm making use of simula- P purp '

: ; o tion ¢ depending org, such thatp,= ¢(py) for any lagr
tion annealing seems to perform similarly to IAAIF9]. Re- ) : -
cently, a correction of AAFT(CAAFT) that results in an [12,13. If g has an analytic form, then it may be possible to

unbiased match of the linear correlations was proposed iﬂqnd an_analytlc expression fqﬁs af well. In that case, given
[10]. atpy is known and by setting,=py, one can invertp to

. _ 71 . 71 .
In this paper, we develop further the somehow profouncfInd pu=¢ “(px), if ¢ = exists.

rationale of the CAAFT algorithm and formulate a concep- In general, the functiom, as defined in Eq(1), does not

tual approach for the generation of surrogate data consisteﬂfi\“.e an analytic form becauds, is not knolwn anallytlcally,
ut it can be approximated by an analytic function, e.g., a

with Hy, which we then solve analytically. The new algo- .
polynomial p,,, of degreem,

m
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Low degree polynomials have been used to approximate (iii) Findr, from Eq.(4) for the givenc andr, using the
such transformg14,15. Then using the definition for the sample estimatesinstead ofp. The common practice is that

autocorrelation, the approximate expressiondoreads the solution exists and it is unique. If this is not the case,
m m repeat the step8)—(iii) for a neww until a unique solution
2 asat(ﬂs,t_ﬂsﬂt) is obtained.
s=11t=1 (iv) Generate a realizatiom of a standard normal process
Px=¢Pu)= ' © with autocorrelationr,,. We choose to do this simply by
521 t21 Asd( s+t Mshit) means of an autoregressive model of some opl&R(p).

The parameterb=[bg,bq, ... ,b,]" of AR(p) are found
where an arbitrary lag is implied as argument for the au- fromr, using the normal equations solved effectively by the
tocorrelations,us is the sth central moment oU; being  Levinson algorithn{18]. The AR(p) model is run to gener-
Mok+1=0, may=1X3X ...X(2k—1), k=0, andug; is  ateu,
the sth-tth central joint moment of the bivariate standard
normal distribution of U;,U;_,), defined as follow$16]:

(2k)' 21! & (2py)?
Mok2a= Z (k== j)rpr’ (v) Transformu to z by reorderingx to match the rank
order ofu, i.e.,z,=F, *(Fo(u;)).
(2k+1)1(21+1)! Note thatu possesses the sample normal marginal CDF
Moki12+1= 1 Fo and the proper,, so thatz possessek,=F,, r,=r,,
2 and is otherwise random, as desired. In practice, however,
0y )20+l the equalityr ,=r, is not exact and, may vary substantially
2 (2pv) aroundr, . Two possible reasons for this are the insufficient
o (k=PII=Prej+nt’ approximation ofg in step(i) and the inevitable variation of
the sample autocorrelation of the generateth step (iv),
mij=0 if  k+Il=odd, which decreases with the increase of data size. The former is
due to the limited power of polynomials in approximating
monotonic functions, and this shortcoming causes also occa-
sional repetitions of the first steps of the algorithm as stated
in step(iii) [20]. The latter constitutes an inherent property
of the so-called “typical realisation” approadhe., a model

P
Ui+1:b0+j21 bjui,(j,1)+ei, ei"’N(O,l).

where v=min(k,l). By substituting the expression for the
moments in Eq(3), the expression fog can be brought to a
polynomial form of the same orden,

Px= ¢(Pu):j21 cipl 4 is used to generate the surrogate gatad cannot be con-
trolled. However, less variation in the autocorrelation is

where the vector of coefficients=[cy, ... .cm]" IS €X-  achieved when the AR) model is optimized making the
pressed only in terms af=[a,, ... an]" (the expressions following steps, in the same way as for the CAAFT algo-

are rather involved and therefore not presented)h&®n-  rithm [10].
pler eXpreSSIOnS can be derived USIng the TChebyCheﬁ' (|) App|y the a|gor|thm presented abow¥etimes and get

Hermite polynomialg17]. Thus an analytic expression for ;1 K surrogate time series.

py is possible if Eq.(4) can be solved with respect ja, . (u) Computerzl, ... rx and find the one, closest tar,
From our simulations, we conjecture thatgifis monotonic,  [21].

then ¢ is also monotonic i —1,1]. Then¢ ' exists and a (iii ) Use the parametets of the | repetition to generate

unique solution fopy can be found from Ed4). The proper  the M surrogate datdsteps(iv) and (v) of the algorithm

standard normal processis completely defined by, and  abovd.

applying the transforng of Eq. (1) to the components df, The K repetitions above as well as the occasional repeti-

the “linear copy” Z of the given procesX is constructed.  tions of stepgi)—(iii) of the first part of the algorithm may
Note that the solution fopy is given analytically from  sjow down the algorithm if the time series is long, but they

the polynomial approximation of and it requires only the have no impact on the principal function of the algorithm.

knowledge of the coefficienta of the polynomial and the Simply, some realizations of white noiseare discarded in

autocorrelatiorpy . the search of the parametdr®f the most suitable AR model

In practice, we operate with a single time seriemather  that generates the surrogate détaough theg transform).
than a procesX and with the sample estimateg andr, for The free parameters of the STAP algorithm are the degree
®y and py, respectively. The steps of the algorithm are asm of the polynomial approximation af, the orderp of the
follows: AR model, the numbekK of repetitions for the optimization

(i) Estimate the vector of coefficients=[a,, ...,amn]’ of AR(p), and the maximum lagr,.x, used to compare
of the polynomialp,, from the graph OinZFX_l(FO(Wi)), ra,...rxtor,. Usually, a smalin (m=10) is sufficient.
i.e., the graph ok versusw after their ranks are matched, For p, there is no optimal range of values but it may vary
wherew=[wy, ... w,]" is standard white normal noise.  with the shape of,, e.g., a slowly decaying, may be

(ii) Computec=[c4, ... ,cy]" for the givena from Eqs. better modeled by a larggr. In all our simulations, we set
(3) and (4). K=M =40 and7ya=p-
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FIG. 1. Percentages of rejectionstdf using as discriminating

statistics the fit of Volterra polynomials from 100 realizations for 0.9 _ ' . ®
each of the three cases in the three panels, as indicated. Three types Yo
of surrogates are used in each test as shown in the Ig¢@m8TAP o8y |
m=5, p=5). The vertical gray line distinguishes the linear from o7t -
the nonlinear statistics. AAFT
"
008y |

The proper performance and superiority of STAP over ©
AAFT and IAAFT were confirmed from simulations on dif- o IAAFT
ferent toy models. CAAFT was found to perform very simi- ya— : —
larly to STAP. We show in Fig. 1 comparative results for 0.8y — -
AAFT, IAAFT, and STAP for three representative synthetic 07 STap
systems: the cube gf an AB process|s;;;=0.3+0.85 S BT R B
+e;,6.~N(0,1) x;=s7], the square of the same AB (X; number of polynomial terms i
=si2), both being consistent withl;, and thex variable of ©
the Rasler systenj19], not consistent witiH,. For each 10 ' ' ' e
system, we generate 100 time series of 2048 samples each 8 | T AAFT
and for each realization we generéde= 40 surrogate data of s | L= STAP
each type. ' a non-epileptic .. -

As discriminating statisticg]' we choose the correlation 2 S — R ataimiiin ’
coefficient(CC) of the fit with the series of Volterra polyno- R RN
mials of degree 2 and order=5. The polynomials for the 50 N W
first i terms, wherei=1, ... ,5, arelinear and for terms 4of et 1
=6, ...,20they are nonlineatsee alsd10]). To quantify 30 ' Specple 1
the discrimination we use the significanc&'=|qp 205 /.
—(q')|/ oy, for each polynomial of terms, wherer; is the S P —— ]
statisticg' on the original data, angti’) ando, are the mean 0 20 a0 40 50 60

number of polynomial terms i

and standard deviation of the statistjcon theM surrogate
data. The null hypothesid, is formally rejected at the 0.05
significance level wher§>1.96, under the assumption of
normality for the statisti@, which turns out to hold in gen-
eral. The percentages of rejections for each of the three sy
tems are Sh.own n Flg.' 1._Very similar results were foundbut for the epileptic EEG(c) The significance for the fits iifa)
when deciding the rejection from the rank ordering of ; o .

P i (upper panegland in(b) (lower panel . The vertical lines in the
Q0.1 - - - 'qM : L . . plots distinguish the linear from the nonlinear polynomials.

For the linear statistics, STAP gives consistently and cor-

rectly no rejections, i.e., an unbiased match of the lineagng for all three algorithms, i.e., correctly no rejections with
correlations, whereas AAFT and IAAFT give very large per- STAP and erroneous rejections with AAFT and IAAFT. We
centages of rejections for all but the first case where AAFTcannot explain why the polynomial fit for the IAAFT surro-
gives about 5% rejections, as expected. For IAAFT, the regates improves with the addition of nonlinear tersse Fig.
jections occur becausey, is very small (10 to 20 times 1). For the nonlinear system, STAP properly converges with
smaller than for AAFT and STAR though the biasq, the addition of a few nonlinear terms to the correct 100%

FIG. 2. (a) The correlation coefficient of the fit with Volterra
polynomials on the original normal EEG dafalack line and 40
é_AFT, IAAFT, and STAP surrogategray lineg in the three pan-
els, as indicatedfor STAPm=10, p=10). (b) The same as ia)

—(q') is smaller than for STAP. rejection level, which AAFT and IAAFT possessed already
For the nonlinear statistics, the feature of the linear statiswith linear statistics.
tics persists for the first two systenfsonsistent withH) Next, we verify the three algorithms on two human EEG
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data sets, one recorded many hours before an epileptic séit;. On the other hand, using STAP surrogates, ltheis

zure accounting for normal brain activity and another re-properly rejected only for the nonlinear statistics and with
corded during an epileptic seizutthe sampling time is high confidence $<2 for the linear fit andS=5 for the
=0.01 s and the data size is=2048 and 1700, respec- nonlinear fi}.

tively). The epileptic EEG seems to exhibit a pattern of 0s- |n general, the test with STAP surrogates tends to be more
cillations indicating a more deterministic character than th%onservative, i.e., small discriminations are found less sig_
nonepileptic EEG, and this constitutes a well-established renjficant, as the data size decreases. For example, the test on
sult in physiology. This is demonstrated also with the fit of 596 sunspot sampleor which a small leap of the polyno-
\olterra polynomials in Fig. 2. The fit does notimprove with ia) it with the addition of nonlinear terms was observed
the inclusion of the first nonlinear terms for the nonep|lept|cgave rejection ofl, for AAFT and IAAFT but not for STAP

EEG but it does for the epileptic EE@vhich could as well (not shown here, see al§b0]). However, this should not be

_be attributed to nonstationarity rather thgn_nonlmear dynaméonsidered as a drawback of the STAP algorithm, as one
ics). These findings are confirmed statistically by the teste ects that th f the test red ith the d
with STAP surrogate data while the results of the test with ;(% ta si at the power ot the test reduces wi € decrease
AAFT and IAAFT are more or less confusing. ot cata size.

In particular, theH, on the normal EEG is erroneously An algorithm that generates surrogate data for the test for

rejected with AAFT because the difference in the fit betweer1oNlinearity has been presented, called the statically trans-
original and surrogate data is about the same for the linedPrmed autoregressive proce¢STAP). The key feature of
and nonlinear polynomial§see Figs. @) and 2c)]. The STAP is that it finds analytically the autocorrelation of an
same test result is obtained with IAAFT for large nonlinear@ppropriate underlying normal process for the test. This is
polynomials, whereas again there is a significant differencéhe main difference of the STAP algorithm from the cor-
in the linear fits between original and IAAFT surrogatast ~ rected AAFT(CAAFT) algorithm, where the autocorrelation
easily discernible as both bias and variance are very smallis estimated numerically. Both CAAFT and STAP algorithms
Using STAP surrogates, th, is not rejected for both linear do not suffer from the severe drawback of the AAFT algo-
and nonlinear fits. rithm, i.e., bias in the match of the original autocorrelation.
For the epileptic EEG, there is again a clear difference inThe AAFT algorithm is essentially impractical for real appli-
the linear fit between original data and AAFT surrogates andations because it favors the rejectiorthf as a result of the
a smaller but equally significant difference between originalbias in the autocorrelation. From the numerical simulations,
data and IAAFT surrogatesee Figs. &) and Zc)]. The it turns out that the IAAFT algorithm may also give small
significanceS for both AAFT and IAAFT increases with the bias in the linear correlations, favoring also the rejection of
addition of the first couple of nonlinear terms, much more forHy. On the other hand, the STAP algorithm performs prop-
IAAFT due to the small variance of CC. However, the de-erly and gives reliable rejections &fy, only whenever this
viation in the linear fit does not support reliable rejection ofappears to be the case.
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