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Statically transformed autoregressive process and surrogate data test for nonlinearity
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The key feature for the successful implementation of the surrogate data test for nonlinearity on a scalar time
series is the generation of surrogate data that represent exactly the null hypothesis~statically transformed
normal stochastic process!, i.e., they possess the sample autocorrelation and amplitude distribution of the given
data. A conceptual approach and algorithm for the generation of surrogate data is proposed, called thestatically
transformed autoregressive process~STAP!. It identifies a normal autoregressive process and a monotonic
static transform, so that the transformed realizations of this process fulfill exactly both conditions and do not
suffer from bias in autocorrelation as the surrogate data generated by other algorithms. The appropriateness of
STAP is demonstrated with simulated and real world data.
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The surrogate data test for nonlinearity has been wid
used in real applications in order to establish statistically
existence of nonlinear dynamics and justify the use of n
linear tools in the analysis of time series@1,2#. The most
general null hypothesisH0 of this test so far is that the ex
amined time seriesx5@x1 , . . . ,xn#8 is a realization of a
normal ~linear! processs5@s1 , . . . ,sn#8 undergoing a pos-
sibly nonlinear static transformh, i.e., xi5h(si), i
51, . . . ,n. To test the null hypothesis, an estimateq from a
nonlinear method applied to the original data,q0, is com-
pared to the estimatesq1 , . . . ,qM on M surrogate time serie
representing the null hypothesis@3,4#. A properly designed
surrogate time seriesz should possess the same autocorre
tion as the original data,r z(t)5r x(t), for a range of lagst,
and the same amplitude distribution,Fz(zi)5Fx(xi) @Fx(xi)
is the cumulative density function~CDF! of xi#, and be oth-
erwise random.

It has been reported that erroneous results are likely
occur mainly due to the insufficiency of the algorithms
generate surrogate data that preserve the original linear
relations @5#. The prominent algorithm of the amplitude
adjusted Fourier transform~AAFT! @6#, used in most appli-
cations so far, is built based on the assumption
monotonicity ofh. Whenh is not monotonic, the AAFT al-
gorithm is found to favor the rejection ofH0 due to the
mismatch of the original linear correlations@7#. The iterated
AAFT ~IAAFT ! algorithm improves the match of the aut
correlation of AAFT@8#, but with about the same accurac
for all the surrogates, so that the small variance, combi
with the small bias, may be another cause for false reject
in some cases@7#. Another algorithm making use of simula
tion annealing seems to perform similarly to IAAFT@9#. Re-
cently, a correction of AAFT~CAAFT! that results in an
unbiased match of the linear correlations was propose
@10#.

In this paper, we develop further the somehow profou
rationale of the CAAFT algorithm and formulate a conce
tual approach for the generation of surrogate data consis
with H0, which we then solve analytically. The new alg
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rithm, called STAP, generates the surrogate data as rea
tions of a suitablestatically transformed autoregressive pro
cess~STAP!, i.e., the process underH0 is designed as a stati
transform of a suitable normal process.

The main idea behind the STAP algorithm is that forany
stationary processX5@X1 ,X2 , . . . #8, for which we have fi-
nite scalar measurementsx, there is a scalarlinear stochastic
processZ with the same autocorrelationrX and marginal
CDF FX as for the observed process@rZ(t)5rX(t) and
FZ(zi)5FX(xi)#, i.e., Z is a scalar ‘‘linear copy’’ of the
observedX. The objective is to deriveZ through a static
monotonic transformg on a scalar normal processU with a
proper autocorrelationrU , i.e., Zi5g(Ui). Thus g and rU
have to be properly selected, so thatZ has the desired prop
erties. In practice, the surrogate data set is a finite realiza
z5@z1 , . . . ,zn#8 of the processZ and g and rU are esti-
mated based solely onx. Note thatg and U are in general
different fromh andS, respectively, ofH0 ~they are the same
if h is monotonic@10#!. Thus with this approachH0 can be
formulated more generally, i.e., the time series is genera
by a linear stochastic process.

Let F0 be the marginal CDF of a standard normal proce
U. A suitable choice forg, so thatFZ(zi)5FX(xi), is de-
fined as@11#

Zi5g~Ui !5FX
21

„F0~Ui !…, ~1!

whereg is monotonic by construction. Assuming thatFX(xi)
is continuous and strictly increasing and that21,rU,1,
which are both true for all practical purposes, there is a fu
tion f depending ong, such thatrZ5f(rU) for any lagt
@12,13#. If g has an analytic form, then it may be possible
find an analytic expression forf as well. In that case, given
thatrX is known and by settingrZ[rX , one can invertf to
find rU5f21(rX), if f21 exists.

In general, the functiong, as defined in Eq.~1!, does not
have an analytic form becauseFX is not known analytically,
but it can be approximated by an analytic function, e.g.
polynomialpm of degreem,

Zi5g~Ui !.pm~Ui !5a01(
j 51

m

ajUi
j . ~2!
©2002 The American Physical Society01-1
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Low degree polynomials have been used to approxim
such transforms@14,15#. Then using the definition for the
autocorrelation, the approximate expression forf reads

rX5f~rU!5

(
s51

m

(
t51

m

asat~ms,t2msm t!

(
s51

m

(
t51

m

asat~ms1t2msm t!

, ~3!

where an arbitrary lagt is implied as argument for the au
tocorrelations,ms is the sth central moment ofUi being
m2k1150, m2k51333 . . . 3(2k21), k>0, and ms,t is
the sth-tth central joint moment of the bivariate standa
normal distribution of (Ui ,Ui 2t), defined as follows@16#:

m2k,2l5
~2k!! ~2l !!

2k1 l (
j 50

n
~2rU!2 j

~k2 j !! ~ l 2 j !! ~2 j !!
,

m2k11,2l 115
~2k11!! ~2l 11!!

2k1 l 11

3(
j 50

n
~2rU!2 j 11

~k2 j !! ~ l 2 j !! ~2 j 11!!
,

m i , j50 if k1 l 5odd,

where n5min(k,l). By substituting the expression for th
moments in Eq.~3!, the expression forf can be brought to a
polynomial form of the same orderm,

rX5f~rU!5(
j 51

m

cjrU
j , ~4!

where the vector of coefficientsc5@c1 , . . . ,cm#8 is ex-
pressed only in terms ofa5@a1 , . . . ,am#8 ~the expressions
are rather involved and therefore not presented here!. Sim-
pler expressions can be derived using the Tchebych
Hermite polynomials@17#. Thus an analytic expression fo
rU is possible if Eq.~4! can be solved with respect torU .
From our simulations, we conjecture that ifg is monotonic,
thenf is also monotonic in@21,1#. Thenf21 exists and a
unique solution forrU can be found from Eq.~4!. The proper
standard normal processU is completely defined byrU , and
applying the transformg of Eq. ~1! to the components ofU,
the ‘‘linear copy’’ Z of the given processX is constructed.

Note that the solution forrU is given analytically from
the polynomial approximation ofg and it requires only the
knowledge of the coefficientsa of the polynomial and the
autocorrelationrX .

In practice, we operate with a single time seriesx rather
than a processX and with the sample estimatesFx andr x for
FX and rX , respectively. The steps of the algorithm are
follows:

~i! Estimate the vector of coefficientsa5@a1 , . . . ,am#8
of the polynomialpm from the graph ofxi5Fx

21(F0(wi)),
i.e., the graph ofx versusw after their ranks are matched
wherew5@w1 , . . . ,wn#8 is standard white normal noise.

~ii ! Computec5@c1 , . . . ,cm#8 for the givena from Eqs.
~3! and ~4!.
02520
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~iii ! Find r u from Eq. ~4! for the givenc andr x using the
sample estimatesr instead ofr. The common practice is tha
the solution exists and it is unique. If this is not the ca
repeat the steps~i!–~iii ! for a neww until a unique solution
is obtained.

~iv! Generate a realizationu of a standard normal proces
with autocorrelationr u . We choose to do this simply by
means of an autoregressive model of some orderp, AR(p).
The parametersb5@b0 ,b1 , . . . ,bp#8 of AR(p) are found
from r u using the normal equations solved effectively by t
Levinson algorithm@18#. The AR(p) model is run to gener-
ateu,

ui 115b01(
j 51

p

bjui 2( j 21)1ei , ei;N~0,1!.

~v! Transformu to z by reorderingx to match the rank
order ofu, i.e., zi5Fx

21
„F0(ui)….

Note thatu possesses the sample normal marginal C
F0 and the properr u , so thatz possessesFz5Fx , r z5r x ,
and is otherwise random, as desired. In practice, howe
the equalityr z5r x is not exact andr z may vary substantially
aroundr x . Two possible reasons for this are the insufficie
approximation ofg in step~i! and the inevitable variation o
the sample autocorrelation of the generatedu in step ~iv!,
which decreases with the increase of data size. The form
due to the limited power of polynomials in approximatin
monotonic functions, and this shortcoming causes also o
sional repetitions of the first steps of the algorithm as sta
in step~iii ! @20#. The latter constitutes an inherent proper
of the so-called ‘‘typical realisation’’ approach~i.e., a model
is used to generate the surrogate data! and cannot be con
trolled. However, less variation in the autocorrelation
achieved when the AR(p) model is optimized making the
following steps, in the same way as for the CAAFT alg
rithm @10#.

~i! Apply the algorithm presented aboveK times and get
z1, . . . ,zK surrogate time series.

~ii ! Computer z1, . . . ,r zK and find the oner zl closest tor x
@21#.

~iii ! Use the parametersb of the l repetition to generate
the M surrogate data@steps~iv! and ~v! of the algorithm
above#.

The K repetitions above as well as the occasional rep
tions of steps~i!–~iii ! of the first part of the algorithm may
slow down the algorithm if the time series is long, but th
have no impact on the principal function of the algorithm
Simply, some realizations of white noisew are discarded in
the search of the parametersb of the most suitable AR mode
that generates the surrogate data~through theg transform!.

The free parameters of the STAP algorithm are the deg
m of the polynomial approximation ofg, the orderp of the
AR model, the numberK of repetitions for the optimization
of AR(p), and the maximum lagtmax, used to compare
r z1, . . . ,r zK to r x . Usually, a smallm (m<10) is sufficient.
For p, there is no optimal range of values but it may va
with the shape ofr x , e.g., a slowly decayingr x may be
better modeled by a largerp. In all our simulations, we se
K5M540 andtmax5p.
1-2
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The proper performance and superiority of STAP ov
AAFT and IAAFT were confirmed from simulations on di
ferent toy models. CAAFT was found to perform very sim
larly to STAP. We show in Fig. 1 comparative results f
AAFT, IAAFT, and STAP for three representative synthe
systems: the cube of an AR~1! process@si 1150.310.8si

1ei ,ei;N(0,1),xi5si
3#, the square of the same AR~1! (xi

5si
2), both being consistent withH0, and thex variable of

the Rössler system@19#, not consistent withH0. For each
system, we generate 100 time series of 2048 samples
and for each realization we generateM540 surrogate data o
each type.

As discriminating statisticsqi we choose the correlatio
coefficient~CC! of the fit with the series of Volterra polyno
mials of degree 2 and orderv55. The polynomials for the
first i terms, wherei 51, . . . ,5, arelinear and for termsi
56, . . . ,20 they are nonlinear~see also@10#!. To quantify
the discrimination we use the significanceSi5uq0

i

2^qi&u/sq
i for each polynomial ofi terms, whereq0

i is the
statisticqi on the original data, and̂qi& andsq

i are the mean
and standard deviation of the statisticqi on theM surrogate
data. The null hypothesisH0 is formally rejected at the 0.05
significance level whenS.1.96, under the assumption o
normality for the statisticq, which turns out to hold in gen
eral. The percentages of rejections for each of the three
tems are shown in Fig. 1. Very similar results were fou
when deciding the rejection from the rank ordering
q0

i ,q1
i , . . . ,qM

i .
For the linear statistics, STAP gives consistently and c

rectly no rejections, i.e., an unbiased match of the lin
correlations, whereas AAFT and IAAFT give very large pe
centages of rejections for all but the first case where AA
gives about 5% rejections, as expected. For IAAFT, the
jections occur becausesq

i is very small ~10 to 20 times
smaller than for AAFT and STAP!, though the biasq0

i

2^qi& is smaller than for STAP.
For the nonlinear statistics, the feature of the linear sta

tics persists for the first two systems~consistent withH0)

FIG. 1. Percentages of rejections ofH0 using as discriminating
statistics the fit of Volterra polynomials from 100 realizations f
each of the three cases in the three panels, as indicated. Three
of surrogates are used in each test as shown in the legend~for STAP
m55, p55). The vertical gray line distinguishes the linear fro
the nonlinear statistics.
02520
r

ch

s-

f

r-
r

-
T
-

s-

and for all three algorithms, i.e., correctly no rejections w
STAP and erroneous rejections with AAFT and IAAFT. W
cannot explain why the polynomial fit for the IAAFT surro
gates improves with the addition of nonlinear terms~see Fig.
1!. For the nonlinear system, STAP properly converges w
the addition of a few nonlinear terms to the correct 100
rejection level, which AAFT and IAAFT possessed alrea
with linear statistics.

Next, we verify the three algorithms on two human EE

FIG. 2. ~a! The correlation coefficient of the fit with Volterra
polynomials on the original normal EEG data~black line! and 40
AAFT, IAAFT, and STAP surrogates~gray lines! in the three pan-
els, as indicated~for STAPm510, p510). ~b! The same as in~a!
but for the epileptic EEG.~c! The significance for the fits in~a!
~upper panel! and in ~b! ~lower panel! . The vertical lines in the
plots distinguish the linear from the nonlinear polynomials.

pes
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data sets, one recorded many hours before an epileptic
zure accounting for normal brain activity and another
corded during an epileptic seizure~the sampling time ists
50.01 s and the data size isn52048 and 1700, respec
tively!. The epileptic EEG seems to exhibit a pattern of o
cillations indicating a more deterministic character than
nonepileptic EEG, and this constitutes a well-established
sult in physiology. This is demonstrated also with the fit
Volterra polynomials in Fig. 2. The fit does not improve wi
the inclusion of the first nonlinear terms for the nonepilep
EEG but it does for the epileptic EEG~which could as well
be attributed to nonstationarity rather than nonlinear dyna
ics!. These findings are confirmed statistically by the t
with STAP surrogate data while the results of the test w
AAFT and IAAFT are more or less confusing.

In particular, theH0 on the normal EEG is erroneous
rejected with AAFT because the difference in the fit betwe
original and surrogate data is about the same for the lin
and nonlinear polynomials@see Figs. 2~a! and 2~c!#. The
same test result is obtained with IAAFT for large nonline
polynomials, whereas again there is a significant differe
in the linear fits between original and IAAFT surrogates~not
easily discernible as both bias and variance are very sm!.
Using STAP surrogates, theH0 is not rejected for both linea
and nonlinear fits.

For the epileptic EEG, there is again a clear difference
the linear fit between original data and AAFT surrogates a
a smaller but equally significant difference between origi
data and IAAFT surrogates@see Figs. 2~b! and 2~c!#. The
significanceS for both AAFT and IAAFT increases with the
addition of the first couple of nonlinear terms, much more
IAAFT due to the small variance of CC. However, the d
viation in the linear fit does not support reliable rejection
s
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,
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tic

s

cs
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H0. On the other hand, using STAP surrogates, theH0 is
properly rejected only for the nonlinear statistics and w
high confidence (S,2 for the linear fit andS.5 for the
nonlinear fit!.

In general, the test with STAP surrogates tends to be m
conservative, i.e., small discriminations are found less s
nificant, as the data size decreases. For example, the te
296 sunspot samples~for which a small leap of the polyno
mial fit with the addition of nonlinear terms was observe!
gave rejection ofH0 for AAFT and IAAFT but not for STAP
~not shown here, see also@10#!. However, this should not be
considered as a drawback of the STAP algorithm, as
expects that the power of the test reduces with the decr
of data size.

An algorithm that generates surrogate data for the test
nonlinearity has been presented, called the statically tra
formed autoregressive process~STAP!. The key feature of
STAP is that it finds analytically the autocorrelation of a
appropriate underlying normal process for the test. This
the main difference of the STAP algorithm from the co
rected AAFT~CAAFT! algorithm, where the autocorrelatio
is estimated numerically. Both CAAFT and STAP algorithm
do not suffer from the severe drawback of the AAFT alg
rithm, i.e., bias in the match of the original autocorrelatio
The AAFT algorithm is essentially impractical for real app
cations because it favors the rejection ofH0 as a result of the
bias in the autocorrelation. From the numerical simulatio
it turns out that the IAAFT algorithm may also give sma
bias in the linear correlations, favoring also the rejection
H0. On the other hand, the STAP algorithm performs pro
erly and gives reliable rejections ofH0, only whenever this
appears to be the case.
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